Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(9): 10913-10928, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463261

RESUMEN

In the current work, we introduce a novel class of molecules termed carbo-metallabenzenes, and their aromaticity has been comprehensively analyzed. The molecules were strategically designed with the insertion of acetylene (C≡C or C2) units in some selected metallabenzenes. Furthermore, if a second metallic unit is inserted (replacing a sp2 carbon) in the carbo-metallabenzenes rings, a new family of carbo-mers is generated, and this second group has been named as carbo-dimetallabenzenes. The primary objective of this work is to ascertain, through various methodologies, whether these newly proposed molecules retain the aromatic characteristics observed in carbo-benzene. The methodologies employed for bond analysis and aromaticity exploration include the analysis of the molecular orbitals, energy decomposition analysis, electron density of delocalized bonds, magnetically induced current density, and the induced magnetic field (Bind). This study sheds light on that the insertion of the metallic centers reduces the electronic delocalization and their aromaticity is, in some cases, comparable with the electronic delocalization of the inorganic iminobora-borazine and also provides valuable insights into their electronic structure through a multifaceted analysis.

2.
ACS Omega ; 6(30): 19629-19641, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34368550

RESUMEN

In the current work, the analysis of the electronic delocalization of some metallacycles, based on borazine, was realized by employing magnetic criteria, such as the induced magnetic field and magnetically induced current densities, and electronic criteria, such as adaptative natural density partitioning and the analysis of molecular orbitals. The current metallaborazines were generated from isoelectronic substitutions. The main question is whether the electronic delocalization increases or decreases. The results showed that metal-N bonded borazines could be cataloged as delocalized compounds. On the other hand, the metal-B bonded borazines could be cataloged as nonaromatic (or weak aromatic) compounds based on the results of this analysis.

3.
ACS Omega ; 6(24): 16251-16252, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34179669

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.1c00632.].

4.
ACS Omega ; 6(14): 9887-9897, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33869969

RESUMEN

In the current work, some metallabenzenes with one and several fused rings were analyzed in terms of their electronic delocalization. These fused-ring metallabenzenes are known as metallabenzenoids, and their aromatic character is not free of controversy. The systems of the current work were designed from crystallographic data of some synthesized molecules, and their electronic delocalization (aromaticity) was computationally examined in terms of the molecular orbital analysis (Hückel's rule), the induced magnetic field, and ring currents. The computational evidence allows us to understand if these molecules are or are not aromatic compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...